$\qquad$
$\qquad$

## Estimation and Number Theory

## Worksheet 1 Estimation

Find each sum or difference. Then use rounding to check that your answer is reasonable.
Round each number to the nearest 100.
Example

| $475+382=?$ |
| :--- |
| $475+382=$857  <br> Number Rounded to the nearest 100 <br> 475 500 <br> 382 400 <br> answer is reason  |
| 900 |

The estimated sum is $\qquad$ 900 .


Is your answer reasonable? $\qquad$ Yes

1. Find $534+208$.
$534+208=$ $\qquad$

| Number | Rounded to the nearest 100 |
| :---: | :--- |
| 534 |  |
| 208 |  |
| Add |  |

The estimated sum is $\qquad$
Is your answer reasonable? $\qquad$
2. Find $836-487$.
$836-487=$ $\qquad$

| Number | Rounded to the nearest 100 |
| :---: | :--- |
| 836 |  |
| 487 |  |
| Subtract |  |

The estimated difference is $\qquad$
Is your answer reasonable? $\qquad$

## Name:

$\qquad$

## Date:

$\qquad$

Find each sum or difference. Then use rounding to check that your answer is reasonable. Round each number to the nearest 1,000 .

Example

$$
\begin{aligned}
& 1,398+4,687=? \\
& 1,398+4,687=6,085
\end{aligned}
$$

$$
\begin{aligned}
& 6,085 \text { is close to } \\
& 6,000 \text {, so the answer } \\
& \text { is reasonable. }
\end{aligned}
$$

| Number | Rounded to the nearest 1,000 |
| :---: | :---: |
| 1,398 | 1,000 |
| 4,687 | 5,000 |
| Add | 6,000 |



Is your answer reasonable? $\qquad$ Yes
3. Find $4,772+2,409$.
$4,772+2,409=$ $\qquad$

| Number | Rounded to the nearest 1,000 |
| :---: | :--- |
| 4,772 |  |
| 2,409 |  |
| Add |  |

Is your answer reasonable? $\qquad$
$\qquad$
4. Find $14,842-9,221$.

$$
14,842-9,221=
$$

$\qquad$

| Number | Rounded to the nearest 1,000 |
| :---: | :--- |
| 14,842 |  |
| 9,221 |  |
| Subtract |  |

Is your answer reasonable? $\qquad$

## Estimate each sum or difference using front-end estimation.

Example

$$
7,389-2,543=?
$$


$\underline{7,000}-\underline{2,000}=\underline{5,000}$

The leading digit of 2,543 is 2 .
5. $3,351+1,469$
6. $9,217-2,881$

## Name:

$\qquad$

## Date:

Find each sum or difference. Then use front-end estimation to check that your answer is reasonable.

Example
$478+403=$ $\qquad$


Estimated sum: $\qquad$ $+$ $\qquad$ $=800$

Explain: 881 is close to 800 , so the answer is reasonable.
7. $798-465=$ $\qquad$

$$
\underset{\downarrow}{7} 98-\underset{\downarrow}{\downarrow}
$$

Estimated difference: $\qquad$ - $\qquad$ $=$

Explain: $\qquad$
8. $2,326+3,639=$ $\qquad$


Estimated sum: $\qquad$ $+$ $\qquad$
$\qquad$

Explain: $\qquad$
9. $5,389-2,658=$ $\qquad$

$$
\underset{\downarrow}{(5), 389}-\underset{\downarrow}{(2), 658}
$$

Estimated difference: $\qquad$
$\qquad$
$\qquad$

Explain: $\qquad$
$\qquad$

Find each product. Then use rounding to check that your answer is reasonable.

Example
$114 \times 3=\underline{342}$

| Number | Rounded to the nearest <br> $\mathbf{1 0 0 \times 3}$ |
| :---: | :---: |
| 114 | $100 \times 3=300$ |

Is the answer reasonable? Yes

10. $326 \times 3=$ $\qquad$

| Number | Rounded to the nearest <br> $100 \times 3$ |
| :---: | :---: |
|  |  |

Is the answer reasonable? $\qquad$
11. $267 \times 2=$ $\qquad$

| Number | Rounded to the nearest <br>  <br>  |
| :---: | :---: |

Is the answer reasonable? $\qquad$

## Name:

$\qquad$

## Date:

Find each product. Then use front-end estimation to check that your answer is reasonable.

Example

$$
\begin{aligned}
& 79 \times 5= 395 \\
& \begin{aligned}
79 \\
\downarrow
\end{aligned} \times 5 \\
& 70 \times 5=-350 \\
& \hline
\end{aligned}
$$

The estimated product is $\qquad$ .

Explain: $\frac{395 \text { is close to } 350 \text {, so the answer is reasonable. }}{\text {. }}$
12. $54 \times 4=$ $\qquad$

$$
(5) 4 \times 4
$$

Estimated product: $\qquad$ $\times 4=$ $\qquad$

Explain: $\qquad$
13. $112 \times 3=$ $\qquad$

$$
\text { (1) } 12 \times 3
$$

Estimated product: $\qquad$ $\times 3=$ $\qquad$

Explain: $\qquad$
$\qquad$

Find each quotient. Then use related multiplication facts to check that your answer is reasonable.

Example

| $741 \div 3$ | 247 |
| :---: | :---: |
|  | $3 \longdiv { 7 4 1 }$ |
| $741 \div 3=247$ | 600 |
|  | 141 |
| $3 \times 240=720$ | 120 |
| $3 \times 250=750$ | 2 |
|  | $\underline{1}$ |

Estimated quotient:

$$
750 \div 3=250
$$

The answer is $\qquad$ reasonable

741 is closer to 750 than 720 . So, $741 \div 3$
 rounds to $750 \div 3$.
14. $496 \div 4=$ $\qquad$
$4 \times$ $\qquad$ $=$
$4 \times$ $\qquad$ $=$

Estimated quotient: $\qquad$ $\div 4=$ $\qquad$
The answer is $\qquad$
15. $516 \div 2=$ $\qquad$
$\qquad$ $\times$ $\qquad$ $=$
$\qquad$ $\times$ $\qquad$

$$
=
$$

$\qquad$
Estimated quotient: $\qquad$ $\div$ $\qquad$ $=$ $\qquad$
The answer is $\qquad$

## Name:

$\qquad$

## Date:

$\qquad$
16. $780 \div 5=$ $\qquad$
$\qquad$
$\qquad$
Estimated quotient: $\qquad$ $\div$ $\qquad$ $=$ $\qquad$
The answer is $\qquad$ _.

## Solve. Decide whether to find an estimate or an exact answer.

## Example

724 meters of barbed wire is needed to enclose a park. How much barbed wire is needed to enclose 4 identical parks?
$724 \mathrm{~m} \times 4=2,896 \mathrm{~m}$

2,896 meters of barbed wire is needed.

An exact answer is needed because the question asks how much barbed wire is needed.
17. Ms. Katy has $\$ 111$. She wants to spend $\$ 52$ on books, $\$ 33$ on fruit, and $\$ 21$ on vegetables. Does she have enough money to buy all these things?
18. A bottle contains 784 milliliters of milk. A family drinks 309 milliliters of milk in the morning, and the rest of the milk in the afternoon. How much milk do they drink in the afternoon?
19. Caithlin spent $\$ 14.99$ on a sweater, $\$ 5.29$ on 2 pairs of socks, and $\$ 8.99$ on a blouse. About how much money did Caithlin spend in all?

## Name:

$\qquad$

## Date:

$\qquad$

## Worksheet 2 Factors

## Write the missing numbers.

Example
$14 \times 3=$ $\qquad$
42 can be divided exactly by $\qquad$ and $\qquad$ 3

1. $21 \times 5=$ $\qquad$
$\qquad$ can be divided exactly by 21 and $\qquad$
2. $35 \times 3=$ $\qquad$
$\qquad$ can be divided exactly by $\qquad$ and $\qquad$

Write the missing numbers.
Example
$12 \times 3=$ $\qquad$ 36 is a product of 12 and 3 .

12 and 3 are factors of $\qquad$ 36 .

Whole numbers can be broken into factors.
3. $8 \times 12=$ $\qquad$
$\qquad$ is a product of 8 and 12.
$\qquad$ and $\qquad$ are factors of $\qquad$
4. $26 \times 4=$ $\qquad$
$\qquad$ is a product of 26 and 4 .
$\qquad$ and $\qquad$ are factors of $\qquad$
$\qquad$

Find the quotient. Then write the missing words.
Example
$12 \div 4$
$12 \div 4=3$
Can 12 be divided exactly
by 4 ? Yes
Is 4 a factor of 12 ? Yes
12 is divided exactly by 4 . This means that 4 is a factor of 12 .
5. $14 \div 5=$ $\qquad$
Can 14 be divided exactly by 5 ? $\qquad$
Is 5 a factor of 14 ? $\qquad$
6. $18 \div 6=$ $\qquad$
Can 18 be divided exactly by 6 ? $\qquad$
Is 6 a factor of 18 ? $\qquad$
7. $28 \div 7=$ $\qquad$
Can 28 be divided exactly by 7 ? $\qquad$
Is 7 a factor of 28 ? $\qquad$

## Name:

$\qquad$

## Date:

$\qquad$

## Find the factors of each number.

Example

$$
\begin{aligned}
8 & =1 \times 8 \\
& =2 \times 4
\end{aligned}
$$

The factors of 8 are $1,2,4$, and 8 .

A whole number can be written as a product of factors.

8. $24=1 \times 24$

$$
\begin{aligned}
& =2 \times \ldots \\
& =\square \times 6 \\
& =\square
\end{aligned}
$$

The factors of 24 are $\qquad$
$\qquad$
$\qquad$
$\longrightarrow$ _ , and $\qquad$
9. $54=$ $\qquad$ $\times$ $\qquad$

$$
=\ldots
$$

$$
=
$$

$\qquad$ $\times$ $\qquad$

$$
=
$$

$\qquad$ $\times$ $\qquad$

The factors of 54 are $\qquad$ - $\qquad$
$\qquad$
$\qquad$
$\qquad$ , $\qquad$ and $\qquad$ .

Name: $\qquad$
10. $72=$ $\qquad$ $\times$ $\qquad$

$$
=\ldots \times
$$

$$
=
$$

$$
=ـ \quad \times
$$

$\qquad$
$=$ $\qquad$ $\times$ $\qquad$
$=$ $\qquad$ $\times$ $\qquad$
The factors of 72 are $\qquad$
 $\ldots, \quad$ _ _ _ _,$\ldots$, and ___ .
11. $108=$ $\qquad$ $\times$ $\qquad$
$=$ $\qquad$ $\times$ $\qquad$
$=$ $\qquad$ $\times$ $\qquad$
$=$ $\qquad$ $\times$ $\qquad$
$=\ldots \times$
$=\ldots$ $\qquad$
The factors of 108 are $\qquad$
$\qquad$
$\qquad$ $\longrightarrow$, $\ldots, \ldots, \ldots$, _ _ and ___

## Name:

$\qquad$

## Date:

$\qquad$

## Divide. Then answer each question.

Example
$15 \div 2=\frac{7 R 1}{8}$
$16 \div 2=\frac{8}{2}$

A common factor is a factor that is
$16 \div 2=8$ shared by two or more numbers.

Is 2 a common factor of 15 and 16 ?
12. $48 \div 3=$ $\qquad$
$52 \div 3=$ $\qquad$
Is 3 a common factor of 48 and 52? $\qquad$
13. $70 \div 5=$ $\qquad$
$95 \div 5=$ $\qquad$
Is 5 a common factor of 70 and 95 ? $\qquad$
14. $45 \div 8=$ $\qquad$
$96 \div 8=$ $\qquad$
Is 8 a common factor of 45 and 96 ? $\qquad$

## Find the factors of each pair of numbers. Then circle the common factors.

Example
12 and 21

12: (1), 2, 3, $4,6,12$
21: (1), (3) 7,21
Which of the circled common factors is the greatest? 3
15. 21 and 28

21: $\qquad$

28: $\qquad$
Which of the circled common factors is greatest? $\qquad$
16. 32 and 42

32: $\qquad$

42: $\qquad$
Which of the circled common factors is the greatest?
17. 48 and 72

48: $\qquad$

42: $\qquad$
Which of the circled common factors is the greatest? $\qquad$

## Name:

$\qquad$

## Date:

$\qquad$

Find the greatest common factor of each pair of numbers.
Example
16 and 24
Step 1 Divide 16 and 24 by a common factor.


$$
16 \div 2=8,24 \div 2=12
$$

Step 2 Divide until 16 and 24 cannot be divided by a common factor other than 1 .

| 2 | 16,24 |
| :--- | :---: |
| 2 | 8,12 |
| 2 | 4,6 |
|  | 2,3 |

> 2 and 3 have no common factor other than 1 .

Step 3 Multiply the common factors.

$$
2 \times 2 \times 2=8
$$

The greatest common factor is 8 .
$\qquad$
18. $\quad 12$ and 24

$\qquad$ $\times$ $\qquad$ $\times$ $\qquad$

$$
=
$$

$\qquad$
The greatest common factor is $\qquad$
20. 54 and 72
21. $\quad 15$ and 42

## Answer the questions using these numbers.



Example
Which of the numbers have 2 as a factor?

## $10,24,36$, and 54

## Name:

$\qquad$

## Date:

$\qquad$
22. Which of the numbers have 3 as a factor?
$\qquad$
23. Which of the numbers have 5 as a factor?
$\qquad$
24. Which of the numbers have 3 and 5 as factors?

Find the factors of each number. Then decide whether the number is a prime number.

Example

$$
17=1 \times 17
$$

The factors of 17 are 1 and 17 . So, 17 is a prime number.

A prime number has only 2 different factors, 1 and itself.
25. 5
26. 9
27. 11
28. 26

## Find the factors of each number. Then decide whether

 the number is a composite number.Example

$$
\begin{aligned}
6 & =1 \times 6 \\
& =2 \times 3
\end{aligned}
$$

The factors of 6 are $1,2,3$, and 6 .
So, 6 is a composite number.
29. 20
30. 13
31. 63
32. 41

Which numbers in Exercises $\mathbf{2 9}$ to $\mathbf{3 2}$ are prime numbers?
33. The prime numbers are $\qquad$ and $\qquad$
34. Why did you choose those two numbers? Explain your reasoning.

## Name:

$\qquad$

## Date:

$\qquad$

## Worksheet 3 Multiples

Find the first eight multiples of each number.

A multiple of a number is the number multiplied by any whole number.

Example


| $1 \times 4=4$ | $2 \times 4=8$ | $3 \times 4=12$ | $4 \times 4=16$ |
| :--- | :--- | :--- | :--- |
| $5 \times 4=20$ | $6 \times 4=24$ | $7 \times 4=28$ | $8 \times 4=32$ |

The first eight multiples of 4 are $\qquad$

$\qquad$
$\qquad$ 20 24 28 , and $\qquad$ 32

1. 6
$1 \times 6=\square$
$2 \times 6=\square$
$3 \times 6=\square$
$4 \times 6=\square$
$5 \times 6=\square$
$6 \times 6=\square$
$7 \times 6=\square$
$8 \times 6=\square$

The first eight multiples of 6 are $\qquad$
2. 8
$1 \times 8=\square$
$2 \times 8=\square$
$3 \times 8=\square$
$4 \times 8=\square$
$5 \times 8=\square$
$6 \times 8=\square$
$7 \times 8=\square$
$8 \times 8=\square$

The first eight multiples of 8 are $\qquad$
$\qquad$
$\qquad$

## Circle the numbers that are not multiples of the given number.

## Example

$$
4: \quad 4, \text { (14), } 16,20, \text { (34), } 44
$$

4 is a factor of all the multiples of 4 .
The numbers $4,16,20$, and 44 can be divided exactly by 4 . So, they are multiples of 4 .
3. $3: 12,15,18,21,23$
4. $5: 5,15,25,51,55$
5. 7: $7,17,21,27,35,42,56,63$
6. $\quad 9: 18,36,39,45,47,49,54,63,72,79$

## Check $(\mathcal{V}$ ) the correct box. Then write the missing numbers and words.

Example
Is 14 a multiple of 2 ?
2) $\begin{array}{r}74 \\ \hline\end{array}$
$\begin{array}{r}14 \\ \hline 0\end{array}$


Yes, 14 is the $\qquad$ seventh multiple of 2.

O
No, 14 is not a multiple of 2 . It cannot be divided exactly by 2 .

## Name:

$\qquad$

## Date:

7. Is 24 a multiple of 3 ?

$\qquad$ multiple of 3 .No, 24 is not a multiple of 3 . It cannot be divided exactly by 3 .
8. Is 45 a multiple of 6 ?


Yes, 45 is the $\qquad$ multiple of 6 .
$\square$ No, 45 is not a multiple of 6 . It cannot be divided exactly by 6 .
9. Is 96 a multiple of 8 ?Yes, 96 is the $\qquad$ multiple of 8 .
$\square$ No, 96 is not a multiple of 8 . It cannot be divided exactly by 8 .

## Circle the common multiples of each pair of numbers. Then write the missing numbers.

Example
3: $3,6,9,12,15,18,21$, (24), 27
4: 4, 8, 12) $16,20,(24,28,32,36$

A common multiple is a multiple that is shared between two or more numbers.

The common multiples are $\qquad$ and $\qquad$ 24

The least common multiple is the common multiple that is less than all the others.

The least common multiple is $\qquad$ .
10. $5: 5,10,15,20,25,30,35,40,45$

7: $7,14,21,28,35,42,49,56,63$
The common multiple is $\qquad$ .

The least common multiple is $\qquad$
11. $6: 6,12,18,24,30,36,42,48,54$

8: $8,16,24,32,40,48,56,64,72$
The common multiples are $\qquad$ and $\qquad$
The least common multiple is $\qquad$

## Name:

$\qquad$

## Date:

Find the first two common multiples of each pair of numbers. Circle them and then write the least common multiple.

## Example

3 and 7
3: $3,6,9,12,15,18$, (21), $24,27,30,33,36,39$, (42)
7: 7, 14,(21), 28, 35, (42), 49
The least common multiple is $\qquad$ 21
12. 2 and 5

2 : $\qquad$

5: $\qquad$
The least common multiple is $\qquad$
13. 6 and 9
$6:$ $\qquad$

9: $\qquad$
The least common multiple is $\qquad$

## Find the least common multiple of each pair of numbers using division.

Example
8 and 16
Step 1 Divide 8 and 16 until they cannot be divided by a common factor other than 1 .


Step 2 Multiply the factors.

$$
2 \times 2 \times 2 \times 1 \times 2=16
$$

16 is the least common multiple of 8 and 16 .
14. 9 and 18
15. 14 and 28
16. $\quad 15$ and 45
17. $\quad 12$ and 52

