

Estimation and Number Theory

Worksheet 1 Estimation

Find each sum or difference. Then use rounding to check that your answer is reasonable.

Round each number to the nearest 100.

Example —

$$475 + 382 = ?$$

857 is close to 900, so the answer is reasonable.

Number	Rounded to the nearest 100
475	500
382	400
Add	900

The estimated sum is 900.

Is your answer reasonable? ______Yes

1. Find 534 + 208.

Number	Rounded to the nearest 100
534	
208	
Add	

The estimated sum is _____.

Is your answer reasonable? _____

2. Find 836 - 487.

Number	Rounded to the nearest 100
836	
487	
Subtract	

The estimated difference is ______.

Is your answer reasonable? _____

Find each sum or difference. Then use rounding to check that your answer is reasonable. Round each number to the nearest 1,000.

Example ———

$$1,398 + 4,687 = ?$$

6,085 is close to 6,000, so the answer is reasonable.

Number	Rounded to the nearest 1,000
1,398	1,000
4,687	5,000
Add	6,000

Is your answer reasonable? _____Yes

3. Find 4,772 + 2,409.

Number	Rounded to the nearest 1,000
4,772	
2,409	
Add	

Is your answer reasonable? _____

4. Find 14,842 — 9,221.

Number	Rounded to the nearest 1,000
14,842	
9,221	
Subtract	

Is your answer reasonable? _____

Estimate each sum or difference using front-end estimation.

5. 3,351 + 1,469

6. 9,217 - 2,881

Find each sum or difference. Then use front-end estimation to check that your answer is reasonable.

Example ———

Explain: 881 is close to 800, so the answer is reasonable.

7. 798 - 465 = _____

Estimated difference: _____ = ____

Explain: _____

8. 2,326 + 3,639 = _____

Estimated sum: _____ + ___ = ____

Explain: _____

9. 5,389 - 2,658 = _____

Estimated difference: _____ = ____

Explain: ____

Find each product. Then use rounding to check that your answer is reasonable.

— Example ————

342 is close to 300, so the answer is reasonable.

Number	Rounded to the nearest 100 × 3
114	$100 \times 3 = 300$

Is the answer reasonable? _____Yes___

Number	Rounded to the nearest 100 × 3

Is the answer reasonable? _____

11. 267 × 2 = _____

Number	Rounded to the nearest $100 imes 2$

Is the answer reasonable? _____

Find each product. Then use front-end estimation to check that your answer is reasonable.

Example ———

$$79 \times 5 = _{\underline{}395}$$

The estimated product is ________.

Explain: 395 is close to 350, so the answer is reasonable.

12. 54 × 4 = _____

Estimated product: \times 4 = \times

Explain: _____

13. 112 × 3 = _____

$$0_{12} \times 3$$

Estimated product: $\times 3 =$

Explain: _____

Find each quotient. Then use related multiplication facts to check that your answer is reasonable.

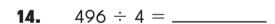
6 0 0 1 4 1

Example -

$$3 \times 240 = 720$$

$$3 \times 250 = 750$$

Estimated quotient:


$$750 \div 3 = \underline{250}$$

The answer is <u>reasonable</u>

Multiplication is the opposite of division.

741 is closer to 750 than 720. So, 741 \div 3 rounds to 750 \div 3.

Estimated quotient: _____ ÷ 4 = ____

The answer is _____

Estimated quotient: _____ = ____

The answer is ______.

16. $780 \div 5 =$

Estimated quotient: _____ ÷ ____ = ____

The answer is ______.

Solve. Decide whether to find an estimate or an exact answer.

Example -

724 meters of barbed wire is needed to enclose a park. How much barbed wire is needed to enclose 4 identical parks?

$$724 \text{ m} \times 4 = 2,896 \text{ m}$$

2,896 meters of barbed wire is needed.

An exact answer is needed because the question asks **how much** barbed wire is needed.

Ms. Katy has \$111. She wants to spend \$52 on books, \$33 on fruit, and \$21 on vegetables. Does she have enough money to buy all these things?

18. A bottle contains 784 milliliters of milk. A family drinks 309 milliliters of milk in the morning, and the rest of the milk in the afternoon. How much milk do they drink in the afternoon?

19. Caithlin spent \$14.99 on a sweater, \$5.29 on 2 pairs of socks, and \$8.99 on a blouse. About how much money did Caithlin spend in all?

Worksheet 2 Factors

Write the missing numbers.

- Example ———

______ can be divided exactly by ______ 14 ____ and _____ 3 ____.

1. 21 × 5 = _____

_____ can be divided exactly by 21 and _____.

2. 35 × 3 = _____

_____ can be divided exactly by _____ and _____.

Write the missing numbers.

- Example -----

_____36 ___ is a product of 12 and 3.

Whole numbers can be broken into **factors**.

3. 8 × 12 = _____

_____ is a product of 8 and 12.

_____ and _____ are factors of _____.

4. 26 × 4 = _____

_____ is a product of 26 and 4.

_____ and ____ are factors of _____.

Find the quotient. Then write the missing words.

Example -

Can 12 be divided exactly

Is 4 a factor of 12? ____Yes_

When a number is divided exactly by another number, there is **no remainder**.

12 is divided exactly by 4. This means that 4 is a factor of 12.

5. $14 \div 5 =$

Can 14 be divided exactly by 5? _____

Is 5 a factor of 14? _____

6. 18 ÷ 6 = _____

Can 18 be divided exactly by 6? _____

Is 6 a factor of 18? _____

7. 28 ÷ 7 = _____

Can 28 be divided exactly by 7? _____

Is 7 a factor of 28? _____

Find the factors of each number.

Example —

$$8 = 1 \times 8$$
$$= 2 \times 4$$

The factors of 8 are 1, 2, 4, and 8.

A whole number can be written as a product of factors.

8.
$$24 = 1 \times 24$$

The factors of 24 are _____, ____, ____, ____,

_____, ____, and _____.

The factors of 54 are ______, _____, _____, ______,

_____, ____, and _____.

10. 72 = ____ × ____

The factors of 72 are ______, _____, _____, _____, _____,

_____, ____, ____, ____, ____, and _____.

11. 108 = _____ × ____

The factors of 108 are _____, ____, ____, ____,

_____, ____, ____, ____, and _____.

Divide. Then answer each question.

Example ——

$$15 \div 2 = 781$$

A common factor is a factor that is shared by two or more numbers.

Is 2 a common factor of 15 and 16? No

Is 3 a common factor of 48 and 52?

13.
$$70 \div 5 =$$

Is 5 a common factor of 70 and 95? _____

14.
$$45 \div 8 =$$

Is 8 a common factor of 45 and 96? _____

Find the factors of each pair of numbers. Then circle the common factors.

– Example –

12 and 21

12: (1), 2, (3), 4, 6, 12

21: (1), (3), 7, 21

Which of the circled common factors is the greatest? _____3

15. 21 and 28

21: _____

28: _____

Which of the circled common factors is greatest?

16. 32 and 42

32: _____

42: _____

Which of the circled common factors is the greatest?

17. 48 and 72

48: _____

42.

Which of the circled common factors is the greatest? _____

Find the greatest common factor of each pair of numbers.

Example —

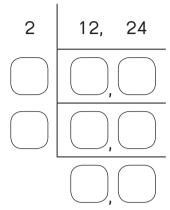
16 and 24

Step 1 Divide 16 and 24 by a common factor.

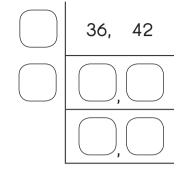
$$16 \div 2 = 8, 24 \div 2 = 12$$

Step 2 Divide until 16 and 24 cannot be divided by a common factor other than 1.

2 and 3 have no common factor other than 1.



Step 3 Multiply the common factors.


$$2 \times 2 \times 2 = 8$$

The greatest common factor is 8.

12 and 24 18.

36 and 42 19.

The greatest common factor is _____.

The greatest common factor is _____.

20. 54 and 72

15 and 42 21.

Answer the questions using these numbers.

Example -

Which of the numbers have 2 as a factor?

10, 24, 36, and 54

Name: _____

Date: _____

- **22.** Which of the numbers have 3 as a factor?
- **23.** Which of the numbers have 5 as a factor?
- **24.** Which of the numbers have 3 and 5 as factors?

Find the factors of each number. Then decide whether the number is a prime number.

- Example ———

$$17 = 1 \times 17$$

The factors of 17 are 1 and 17. So, 17 is a prime number.

A **prime number** has only 2 different factors, 1 and itself.

25. 5

26. 9

27. 11

28. 26

Find the factors of each number. Then decide whether the number is a composite number.

- Example ----

$$6 = 1 \times 6$$
$$= 2 \times 3$$

The factors of 6 are 1, 2, 3, and 6. So, 6 is a composite number.

A **composite number** has more than 2 different factors.

29. 20

30. 13

31. 63

32. 41

Which numbers in Exercises 29 to 32 are prime numbers?

- **33.** The prime numbers are _____ and _____.
- **34.** Why did you choose those two numbers? Explain your reasoning.

Multiples Worksheet 3

Find the first eight multiples of each number.

A multiple of a number is the number multiplied by any whole number.

Example -

$$1 \times 4 = 4$$

$$2 \times 4 = 8$$

$$1 \times 4 = 4$$
 $2 \times 4 = 8$ $3 \times 4 = 12$ $4 \times 4 = 16$

$$4 \times 4 = 16$$

$$5 \times 4 = 20$$

$$5 \times 4 = 20$$
 $6 \times 4 = 24$ $7 \times 4 = 28$ $8 \times 4 = 32$

$$7 \times 4 = 28$$

$$8 \times 4 = 32$$

6 1.

$$2 \times 6 = \left(\right)$$

$$1 \times 6 = \bigcirc$$
 $2 \times 6 = \bigcirc$ $3 \times 6 = \bigcirc$ $4 \times 6 = \bigcirc$

$$5 \times 6 = \bigcirc$$

$$6 \times 6 = \left(\right)$$

$$5 \times 6 = \bigcirc$$
 $6 \times 6 = \bigcirc$ $7 \times 6 = \bigcirc$ $8 \times 6 = \bigcirc$

$$8 \times 6 = \left(\right)$$

The first eight multiples of 6 are _____

2. 8

$$1 \times 8 = ($$

$$2 \times 8 = \bigcirc$$

$$1 \times 8 =$$
 $2 \times 8 =$ $3 \times 8 =$ $4 \times 8 =$

$$4 \times 8 =$$

$$5 \times 8 = \bigcirc$$
 $6 \times 8 = \bigcirc$ $7 \times 8 = \bigcirc$ $8 \times 8 = \bigcirc$

$$7 \times 8 = \bigcirc$$

$$8 \times 8 = \bigcirc$$

The first eight multiples of 8 are _____

Circle the numbers that are not multiples of the given number.

Example -

4: 4, 14, 16, 20, 34, 44

4 is a factor of all the multiples of 4. The numbers 4, 16, 20, and 44 can be divided exactly by 4. So, they are multiples of 4.

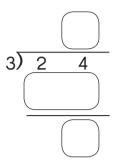
- 12, 15, 18, 21, 23 3.
- 4. 5: 5, 15, 25, 51, 55
- 7, 17, 21, 27, 35, 42, 56, 63 5. 7:
- 18, 36, 39, 45, 47, 49, 54, 63, 72, 79 6.

Check (1/2) the correct box. Then write the missing numbers and words.

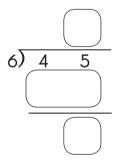
Example -

Is 14 a multiple of 2?

Use division to determine whether a number is a multiple of another number.



Yes, 14 is the _____ seventh ___ multiple of 2.



No,14 is not a multiple of 2. It cannot be divided exactly by 2.

7. Is 24 a multiple of 3?

- Yes, 24 is the _____ multiple of 3.
- No, 24 is not a multiple of 3. It cannot be divided exactly by 3.
- **8.** Is 45 a multiple of 6?

- Yes, 45 is the _____ multiple of 6.
- No, 45 is not a multiple of 6. It cannot be divided exactly by 6.
- **9.** Is 96 a multiple of 8?
 - Yes, 96 is the _____ multiple of 8.
 - No, 96 is not a multiple of 8. It cannot be divided exactly by 8.

Circle the common multiples of each pair of numbers. Then write the missing numbers.

Example -

- 3: 3, 6, 9, (12), 15, 18, 21, (24), 27
- 4: 4, 8, (12), 16, 20, (24), 28, 32, 36

A **common multiple** is a multiple that is shared between two or more numbers.

The common multiples are _____ and ____ 24___.

The **least common multiple** is the common multiple that is less than all the others.

The least common multiple is ______.

- **10.** 5: 5, 10, 15, 20, 25, 30, 35, 40, 45
 - 7: 7, 14, 21, 28, 35, 42, 49, 56, 63

The common multiple is ______.

The least common multiple is ______.

11. 6: 6, 12, 18, 24, 30, 36, 42, 48, 54

8: 8, 16, 24, 32, 40, 48, 56, 64, 72

The common multiples are _____ and _____

The least common multiple is ______.

Find the first two common multiples of each pair of numbers. Circle them and then write the least common multiple.

Example —

3 and 7

- 3: 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42
- 7: 7, 14, 21, 28, 35, 42, 49

The least common multiple is ______.

12. 2 and 5

2: _____

5: _____

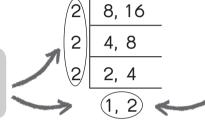
The least common multiple is ______.

13. 6 and 9

6: _____

9: _____

The least common multiple is ______.


Find the least common multiple of each pair of numbers using division.

Example -

8 and 16

Step 1 Divide 8 and 16 until they cannot be divided by a common factor other than 1.

There are five factors.

1 and 2 have no common factor other than 1.

Step 2 Multiply the factors.

$$2 \times 2 \times 2 \times 1 \times 2 = 16$$

16 is the least common multiple of 8 and 16.

14. 9 and 18

15. 14 and 28

16. 15 and 45

17. 12 and 52